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Many people with a history of exposure to loud music or noise report a deterioration of their ability
to understand speech in noisy settings, even if their audiograms and otoacoustic emissions (OAEs)

remain normal, suggesting good outer hair cell (OHC) function.1 Some of these people develop
tinnitus, hyperacusis, or both. Eventually, they may acquire audiometric losses at an earlier age
than those who avoided loud noise.

These observations had been a challenge to explain until a series of studies on rodents,2,3 and

recently one on primates,4 showed that a fraction of inner hair cell (IHC) synapses with auditory
nerve fibers (ANFs) could be destroyed by noise doses that left the hair cells intact, resulting in an
auditory neuropathy, or “synaptopathy.” A telltale sign of auditory neuropathy (and by extension,
of synaptopathy) is that speech perception deficits, particularly in noise, are worse than expected

from the audiometric loss.5 Synaptopathy is also seen well before OHC loss in normally aging

mice,6 a finding corroborated by several postmortem studies of human temporal bones.7,8

Furthermore, the synaptopathic effects of noise exposure and aging appear to be additive.9

While reduced wave I amplitudes of subcutaneously recorded auditory brainstem responses
(ABRs), together with normal OAEs, allow for the routine detection of synaptopathy in animal
models, differential diagnosis of synaptopathy as a contributor to human sensorineural hearing loss
has proven more difficult, as discussed further below. Despite this, an obvious message to people
who report changes in their ability to hear in noise should be: limit your exposure to loud sounds
and/or wear hearing protection. This applies even if their clinical speech-in-noise scores remain
within normal limits, as is common in musicians whose better-trained auditory/cognitive faculties

can partly compensate for potentially noise-damaged ears.10

A number of authors have made the valid points that humans are less susceptible to loud noise than
rodents, that exposures which cause synaptopathy in rodents (e.g., 100 dB SPL for 2 h) already

exceed OSHA11 limits of 85 dB A for 8 h, or 100 dB A for 1 h, and that the relatively narrowband

exposures used in animal work are not representative of real-world noise.12 However, two studies

in CBA/Ca mice showed that exposures to 8–16 kHz noise at 84 dB SPL for 1 week13, and 75 dB

SPL for 2 months14, also caused synaptopathy without affecting OHC function. Furthermore, the

work of Valero et al.4 revealed that susceptibility differences between mice and rhesus monkeys
could be as small as 10 dB. It is thus not yet clear if years or decades of occupational noise at the
OSHA limit (with potential recreational exposures on top) are indeed safe for the ear, sparing both
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cochlear hair cells and synapses.

Another recent mouse study showed that not all noise doses that led to temporary threshold shifts

(TTS) – even as high as 30 dB at 24 h post-exposure – caused synaptopathy.15 While a 2 hour
exposure to 8–16 kHz noise at 100 dB SPL reliably induced synaptopathy, the same exposure at 91

dB SPL did not.15 Interestingly, there was no simple relationship between the amount of TTS and
the extent of synapse loss. Indeed, at frequencies just above the 8–16 kHz exposure band (i.e.,
16–24 kHz), the 91 dB dose caused more TTS than the 100 dB dose, but did not lead to

synaptopathy.15 A similar unclear relationship between the noise dose and the amount of TTS has

been observed in many human studies. As a recent example, Grinn et al.16 reported on a group of
young adults who attended a typical loud recreational event (in most cases a concert), with an
average dose of 93 dB A for 4 h, and a range of 73–104 dB A for 1.5–16 h. Most showed a 1 day
TTS of <10 dB (with full recovery at 7 days), accompanied by correspondingly small but
significant temporary decreases in words-in-noise scores. There was no correlation between the
noise dose and the amount TTS across study participants. Furthermore, compound action potential
(CAP) amplitudes to clicks and 2–4 kHz tone bursts were not affected, arguing against the
development of synaptopathy after a single recreational noise dose. What about many of these

exposures? Prendergast et al.17 studied a large sample of young adults with clinically normal
audiograms whose estimated lifetime recreational noise energy doses varied by a factor of more
than 100. There was no correlation between this lifetime noise dose and click-ABR wave I
amplitude at 80 and 100 dB peSPL. However, it may be that people who frequently subject
themselves to high levels of recreational noise do so because of their “tougher” ears, which sustain
less damage than the potentially more “tender” ears of those who avoid loud music and noise (see
Ref. 18 for a general discussion of this issue).

Other recent studies on human subjects showed that electrocochleography (ECochG) could
potentially detect noise-induced synaptopathy. College student musicians with normal audiometric
thresholds up to 8 kHz, but mild losses at 10–16 kHz, showed slightly decreased click-evoked CAP

amplitudes but significantly increased summating potential (SP) amplitudes.19 Thus, the SP/CAP
ratio was increased in the musicians, a finding also associated with endolymphatic hydrops in

Meniere’s disease.20 This study19 also suggests that elevated thresholds above 8 kHz might point to

synaptic losses at lower frequencies, but this remains to be substantiated. Bramhall et al.21 found
reduced CAP amplitudes in military veterans with high noise exposure histories, and in non-
veteran firearm users, compared with veterans with lower noise histories and non-veterans who did
not fire guns. Importantly, the reduced CAP amplitudes could not be explained by OHC
dysfunction, as assessed with distortion product OAEs (DPOAEs). Finally, other studies have
found reduced CAP or ABR wave I amplitudes in human tinnitus subjects with normal

audiograms, suggesting that synaptopathy can trigger tinnitus.22-24 Note that ABR wave V was not
decreased in these tinnitus subjects, implying a renormalization of the reduced auditory nerve

responses within the brainstem.22-25

What other promising approaches might lead to a differential diagnosis of cochlear synaptopathy in
noise-exposed and aging ears? The acoustic or middle ear muscle reflex (MEMR) could be a
sensitive metric because high-threshold ANFs are likely the main inputs to the MEMR pathway,

and high-threshold ANFs appear to be especially vulnerable to loud noise.26 Wojtczak et al.27 found
that the MEMR evoked by contralateral broadband noise was significantly weaker in human
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tinnitus subjects with normal or near-normal audiograms compared to non-tinnitus controls. In a

recent mouse study, Valero et al.28 used narrowband reflex-eliciting stimuli and demonstrated that
the MEMR was normal when activated from non-synaptopathic cochlear regions, but greatly
weakened in synaptopathic regions. They also showed that this was a more sensitive measure of

synaptopathy than reduced ABR wave I.28 Finally, Zhao et al.29 reported some encouraging results
with CAPs recorded in the presence of a broadband noise, which was intended to mask the
contributions of the better-preserved low-threshold ANFs to the CAP (see also Ref. 30). They
found an increase in chirp-evoked CAP-in-noise thresholds in people with histories of noise

exposure, despite good OHC function as demonstrated with DPOAEs.29

One of the holy grails of audiology has been to differentiate OHC from IHC or presynaptic losses,
and from ANF or postsynaptic losses, which are all presently lumped together as sensorineural
hearing loss. There is little doubt that such differential diagnosis would prove useful in improving
hearing aid fitting, in better predicting cochlear implantation outcomes, and in individualized
auditory training and future regenerative medicine. A landmark example has been the diagnosis of
auditory neuropathy on the basis of an absent or abnormal CAP or ABR, even at high stimulus

levels, in the presence of a robust cochlear microphonic and/or OAEs.5 As outlined above, noise-
and/or age-related cochlear synaptopathy has been more challenging to detect, especially in
individuals with normal or near-normal audiograms. This is presumably because synaptic losses
remain relatively mild in these cases, even if they are functionally significant, affecting speech
perception in noise, and potentially leading to tinnitus and/or hyperacusis. The full impact of
synaptopathy might only be revealed when it can be differentially diagnosed in individuals with
more traditional OHC loss. The question of how this should be done remains an old and

unanswered one.31,33
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Editor’s Note
For additional information we encourage please see Colleen Le Prell’s article in in Volume 5 Issue
2 of Canadian Audiologist.

http://www.canadianaudiologist.ca/issue/volume-5-issue-2-2018/hidden-versus-not-so-hidden-hearing-loss/
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