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Introduction

Hearing aid digital signal processing has evolved to include the ability to log, analyze and classify
acoustic input, essentially in real-time. The result of thisis a series of ongoing acoustic snapshots
of what the listener is hearing that can be used in the personalization of the hearing aid (HA)
fitting. Although the underlying techniques used to accomplish these snapshots can differ across
HA manufacturers, the main objective for tracking and classifying thisinformation is consistent: to

allow the hearing aid to use information related to the listener’s auditory ecology* to automatically
modify the signal processing performance. In other words, automatic modification of the signal
processor can account for the acoustics of alistening situation. Thisistypically accomplished
through classification schemes incorporating acoustic metrics such as signal level, type of noise
and relative ratio of the target signal to competitor. When combined, acoustic metrics can offer
information related to the listener’ s social context or listening intent. Benefit from an automatic
HA classifier is therefore contingent on the accuracy of the classification scheme. Traditionally,
HA classification has been limited to the information obtained from acoustics sensors. A more
holistic approach could enrich this series of snapshots over time by integrating additional
information related to the characteristics of the listening activity (e.g., type, location), social
context (e.g., companions, listening intent) and the overall experienced environment (e.g.,
travelling speed).

Hearing aid performance is most often evaluated in laboratory-based settings and supplemented
with paper and pencil questionnaires and/or interview techniques. Wu et a. have shown that
guestionnaires can be used to supplement acoustic analyses of signals recorded through a hearing

aid to reveal the more commonly experienced listening contexts of importance to the listener®. To
improve generalizability and minimize memory biases, many research centres are placing a greater
emphasis on the collection of real-world, real-time data using experience sampling research
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methods’. Data collection combining passive and interactive techniques are surfacing in the
literature. Passive data collection techniques used in real-world scenarios generally involve digital
recording devices that log asignal of choice. The dosimeter, acommonly used device, collects data
related to sound/noise levels. More modern examplesinclude digital audio and video recorders
found in a@most all smart devices. Many of these devices are accompanied by software that enables
offline data extraction and digital signal processing. For example, the Language Environment
Analyses (LENA) processor coupled with a data extractor, can categorize listening activities and

environments, in addition to basic signal level analyses’. A global positioning system (GPS) device
can passively track the spatial coordinates, or location, of individuals throughout their day. When
accompanied with geographic information systems (GIS), big-data captured with GPS can be

mani pul ated, analyzed, managed and/or spatially presented”®,

Interactive data collection has the advantage of being linked to subjective feedback. One example
of an interactive technique gaining interest in audiology research is ecological momentary
assessment (EMA). EMA involves repeated sampling of the individual’ s moment-to-moment

experiences and behaviours in real-world contexts’ and can be paired with smart devices to display
surveys in real-time™. Emerging literature in this area suggests that EMA is afeasible and valid

research method for listeners with hearing-impairment™. In the case where the listener wears
hearing aids, pairing EMA methods with smart devices can allow for the combination of
interactive and passive data collection. A recent study by Aldaz and colleagues (2016)
demonstrates the pairing of acoustic data with subjective participant feedback to optimize HA

classification and user-defined settings over time®”. Innovative data collection techniques, including
device pairing, present the possibility of real-world investigation into the efficacy and effectiveness

of advanced digital signal processing features™. In addition, information around the experienced
physical context (e.g., location-based information) may potentially contribute to aricher
understanding of auditory ecology and provide valuable information for HA classification
systems.

This pilot study aimed to collect and pair data related to the many facets of the experienced
auditory ecology and to inform future research studies focused on HA fitting personalization.
Specificaly, this exploratory study aimed to describe the following:

1. Thefeasihility of participant data collection using 4 different data collection methods/modalities
(HA, LENA, GPSand EMA);

2. The steps taken to align alarge data set from multiple logging devices;

3. The added value of combining passive and interactive techniques for tracking listener’ s auditory
ecology, including those which offer location-based information.

Methods

Study Overview

Data collection techniques were informed by an interdisciplinary collaboration including scientists
from Western and Wilfrid Laurier Universities and Unitron Canada. This team brought together
experts in the areas of HA signal processing and aural (re)habilitation, with those that specialize in
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human environment analysis and urban development. Passive and interactive data collection
techniques included in this study measured the following dimensions: signal level, physica
location, social context and subjective ratings. Table 1 groups the data collection techniques used
across devices according to: 1) continuously logged; or 2) categorized, requiring additional input in
the form of automatic processing or subjective categorization.

This study included 6 pilot participants, sampled from the research team’ s lab members, with self-
reported normal hearing. Participants were asked to collect from arange of portable devices over 2
8-hour days (Figure 1). Unitron Moxi Kiss 500 receiver-in-the-canal devices were fitted bilaterally
to have 0 dB gain. Hearing aids were connected via a HiPro 2 to alaptop with prototype Unitron
TruFit software. LENA devices and Columbus V-900 GPS systems were worn externally by all
participants and EMA was enabled through an application downloaded on each participant’s
smartphone. Prior to beginning data collection, each participant attended an audiologist-led fitting
and training session specific to the study devices.

Table 1. Data collection techniques across devices for continuously
logged (m) and categorized (O) data.
Passive Mixed | Interactive
Data category | Hearing | LENA | GPS/GIS EMA
Aid
Physical
context " i [ ] L
Time : m/D O
Location
Signallevel |  m .
Social context ! o 0* ) O
Siliectve 2 e
ratings
* Data excluded from study analyses.
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Figure 1. lllustration of user-worn devices.

Data Collection

Datalogging, processing, and storage techniques varied considerably across devices. HA logged

data were classified through an environmental classification system™ which automatically
controlled the program structure. HA data were stored on the laptop in 1 second intervals, for each
device separately; thisincluded overall level (dBA), stimulus category, and directionality. LENA
devices measured average level (dB SPL), across 5-minute intervals. Data were extracted from the
LENA devices using proprietary software; Lena categorization of listening activities and
environments was not used for the purpose of this project. GPS and GIS combined passive and
Interactive techniques through passive logging of location-based information on a second-by-
second basis using the GPS device, followed by GIS mapping and classification of location using
municipa planning data on the local environment. GIS data were further examined for validity and
reliability; missing data points were replaced based on linear interpolation of the geographical
coordinates.

In addition to wearing passive tracking devices, participants also completed EMA surveys. EMA
data collection required subjective completion of survey questions on the users smartphone using
the following electronic prompts: 1) time-triggers sent at random times, 10x per day and between 8
am and 8 pm, with a minimum of 30 minutes between prompts; and 2) self-triggers chosen by the
user during anovel listening situation of interest. A total of 17 questions (6 nested) probed the
participants’ experience with situations including those related to type of listening and noise level,
in addition to 4 ratings scales (refer to Table 2 for a selection of question/response details). EMA
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surveys that took longer than 30 minutes to complete were excluded from analses™; 3 entries were
removed from the final EMA dataset, leaving 58 analyzable EMA surveys.

EMA data were securely uploaded and stored by MetricWire™, a Canadian-owned company, with

access to data only permitted to the researchers. Participant data were automatically encrypted and

owned by the researchers®.
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Table 2. Selection of EMA questions and response options, according to

chosen analyses.

Question n* /N*  Response options n* (%*)
(%°)

Q3: Please tell us 57/58 c Indoors, at home 7(11)
where you are (98) o Indoors, outside of home 15
located during the = Outdoors (25)
listening activity. o Passenger in a vehicle 20

o Driver of a vehicle (33)
12

(20)

3(5

Q6: What type of 56/58 o Active listening by self 11
activity are you (97) o Active listening in small (19)
doing and with group k]|
whom? o Active listening in large (15)

group 4(7)
o Not actively listening 10
(17)

Q9: Describe the 56/58 o Not noisy, it's quiet 5(10)
noise level of the (97) = Slightly noisy 18
listening activity. o Moderately noisy (31)

o Very noisy 24

o Extremely noisy (41)
8(13)
1(2)

Q10: How well do 32/58 1. Very poor- don't 0(0)
you understand (55) understand 1(2)
speech right now? 2. Poor- understand less than 12

half (21)
3. Fair- sometimes 3(%

misunderstand 16
4. Good- understand most (28)
5. Very good- understand

everything

Q11: How much 54/58 1. Very low effort 12
effort do you have (93) 2. Below average effort (21)
to put in to listen 3. Average effort 6 (10)
effectively? 4. Above average effort 27

5. Very high effort (47)
7(12)
2(3)

* The response count is represented by n.
b The expected response number is represented by N.
©The proportion of responses is represented by %.

Canadian Audiologist

-6/15-

Printed 03.11.2025



Data Alignment

Data extracted from each device were formatted and integrated into one file using the following
time-based identifiers: HA PC time, GPS date and time fields, LENA clock time and EMA survey
start time. The time-alignment strategy for this study considered the limitations of all datasets and
the study rationale, resulting in alignment to the real-world EMA dataset, collected with subjective
interpretation, and a more manageable final dataset. Table 3 summarizes the total data collected
across devices, aswell as the time-aligned data used in analyses.

Table 3. lllustration of big-data
integration. Data compares raw and time-
aligned data points.

Device Raw  Time-aligned
data data

Hearing Aids 245,817 21,916

(L+R)

GPS 244,788 21,916

LENA 1,150 g0

EMA 145 S8

Sum 691,079 65,886

For the signal level analysis portion of the study, data selection incorporated time-windowing, to
minimize fluctuation in signal levels measured across devices at single time points. The fina
dataset used to explore the signal level across environments was therefore based on data averaged
across a 5-minute time window surrounding all 58 data entries collected with the EMA. Based on
the maximum duration of an EMA entry (30 minutes), averaged data could span up to 6 five-
minute time-windows. This resulted in the inclusion of 39 five-minute, 18 ten-minute, and asingle
25-minute time-window(s) in the final dataset.

Results

Results are displayed according to time-aligned data by category (refer to Table 1) to illustrate the
utility of location-based information in enriching ecological understanding.

Location Comparison Matrices

A direct comparison matrix of subjectively logged EMA location (n = 57) and GIS informed
location isillustrated in Table 4. Overall, agreement between EMA and GIS locations was high,
with some deviation across al location categories. Thisisin part due to scenarios where the GPS
experienced asignal outage, making it difficult to categorize indoor versus outdoor locations. The
addition of GISinformation related to speed, enhanced categorization of vehicle-based data.
Driverswere instructed via EMA to wait until they were finished operating the vehicle before
logging driver-based responses.
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Table 4. EMA versus GIS categorization of location

of listening activity.

EMA Location
GIS Indoor Vehicle
Location Home n Outdoor b
Home 4 0 1 1
Indoor 1 12 . 0
Outdoor 1 1 16 2
Vehicle 1 2 1 12

home.

passenger.

* activities completed indoors, but outside of the

" combines EMA responses collected as a driver and

EMA and GIS logged locations were broken down according to HA environmental classification in
Table 5. This was accomplished by averaging left and right device data and assigning aHA
classification category based on the maximum logged value. Table 5 shows a direct comparison of
EMA versus GIS location categorization according to the 7 HA classifications. Although not fully
representative of current proprietary classification schemes, this matrix illustrates the casesin
which the addition of either EMA or GIS informed data has the potential to assist in the refinement
of HA classification contexts. This dataset illustrates how |ocation-based data (EMA/GIS) could
enhance classification ability for activities completed in a vehicle that may have otherwise been

classified as conversation in noise.

Table 5. A comparison of location categorization of EMA and GIS
when broken down by HA classification.
Location
Home Indoor ® Outdoor | Vehicle®

HA Classifier | EMA | GIS |EMA : GIS | EMA | GIS | EMA | GIS
Quiet 1 2 0 0 1 1 1 0
Conversation-{ 0 @ 0 | 1 (11 0 0! 0 ;0
Quiet

‘Conversation-| 4 3 4 4 1 0
Small Group

‘Conversation-{ 0 | 0 | 1 [ 11 2 {21 1 i1
Crowd

‘Conversation-| 1 1 2 0 5 7 11 : 13
Noise

‘Noise i 0 517 510 1
Music 001 1T T Tl r

* activities completed indoors, but outside of the home.

" combines EMA responses collected as a driver and passenger.
*Note: Coloured numbers represent the comparison between devices
of the most common classification per location.
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Combining Location-Based Data with Signal Level

Overall sound level captured by the LENA (dB SPL) and the hearing aid (dBA) were compared
according to EMA (Q3) logged locations. Figure 2 illustrates trends within devices and the effect
of the data logging characteristics of each device on the findings. To explore the data further, |eft
and right hearing aid data were separated (across all EMA locations) and vehicle-based data were
separated into two categories (passenger and driver). For the right data series, six fewer entries
were logged due to connectivity issues. Median values for the HA sound levels across location
categories were lower (quieter) when compared to the LENA sound levels, mostly due to the
weighting applied during the measurement. Large level differences are noted for the vehicle-based
data comparisons, with higher HA sound level measurements reported for passengers, when
compared to drivers, and for the right device when compared to the left device worn by adriver.
Passenger-based data included those that were collected in acar or on a bus; higher sound levels
were likely associated with the latter. Higher sound levels measured on the right side driver side
may have related to the presence of passenger and/or car stereo noise. EMA responses confirmed
the presence of speech during many of the driver entries; however, given the small sample of
driver-based data, that incorporated multiple noise sources from within the vehicle, this finding
may be unique to this study’ s dataset.

90

85

80 @ LENA®

75 $ HALP
o b
E 70 [ HAR

65

[ |

60 s

55

50

Home Indoors Outdoors Passenger Driver
EMA location

2Sound level displayed in dB SPL, device limited to a maximum level of 82 dB SPL.
bSound level displayedin dB A.

Figure 2. Overall sound level for LENA and hearing aid devices according to EMA logged location.

The largest spread in the data can be observed with HA sound levels for the outdoor location
category. Thisindicates variability in the outdoor auditory ecology and the frequency content on
the sound being measured, and in ability of the hearing aid to capture this trend. Data logging
characteristics for big-data integration projects are extremely important and will differ according to
device limitations. Furthermore, sound level was not a good indicator of location, due to the
variability noted within location categories. HA classification schemes unigue to vehicle-based
data may be warranted.

Combining Location-Based Data with Social Context

The type of listening activity was first explored according to active versus passive (i.e., not actively
listening) listening for the EMA and listening companion(s) for both the EMA and the HA
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classifier (Figure 3). Overall, EMA social context data aligned with that classified by the hearing
aid, except for when alone. When participants indicated they were in asmall group, the hearing aid
was more likely to log conversation in asmall group and conversation in noise. A large group
context was never classified as conversation in quiet, noise, or quiet. When participants were not
actively listening, the hearing aid most often classified the environment as noise. For the “alone’
entries, a higher proportion of the sound was classified as conversation in noise and noise. This
may be due to the presence of background noise or babble being picked up, even though the
participants indicated they were not engaged in conversation.

45
40 W Cnv? quiet
Cnv small group
. 35 Cnv crowd
=X 30 M Cnv noise
S 25 = Noise
£ | Music
g_ 20 _ W Quiet
O 15
o
10
5
0
Alone Small group Large group Not actively listening
EMA social context
#"Conversationin” is represented by Cnv.

Figure 3. Proportion of HA classified databy EMA activity type.

Social context data were then sorted to display proportion of locations as logged by the GIS, for
context and device (Figure 4). As participants experienced a wide range of sound environment
types across all four Gl S-classified locations, this information alone could not fully classify the
sound environment. For example, the presence and variation in noise level by location cannot be
determined through GI S classifications. Some trends included the presence of GIS logged home
data aligning with smaller group settings for both HAs and EMA, in addition to active and noisier
environments aligning with vehicle-based data.

. ®m Home

R

— B Indoors
&

‘E m Outdoors
a m Vehicle

=

a.

Alone Small Large  Not Quiet  Cnv® Cnv Cnv Cnv  Noise Music
group group actively quiet small crowd noise
listening group
EMA Category HA Classifier

@"Conversationin" is represented by Cnv.

Figure 4. Proportion of both EMA group size and hearing aid classifier in different GPS locations.
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The Addition of Subjective Ratings
Subjective ratings of noise level were explored according to GIS logged location and HA

classification (Figure 5)". A large spread of noise ratings can be observed across GIS locations.
Overal, lower noise ratings in home and indoor locations are noted, along with greater noise
ratings in outdoor and vehicle locations. For the HA classifier, few data entries were classified as
conversation in quiet or music. For the remaining entries, we see similar trends, with lower
subjective noise ratings in environments where the hearing aid classified the situation as quiet or
conversation in asmall group, and higher noise ratings aligning with several hearing aid
classifications of noisier environments.

Extremely noisy A
&
= Very noisy - e
3]
(=<
] .
Moderately noisy J
3 ynesy ‘ ==
-
[+]
(2] . .
) Slightly noisy -
=
Not noisy
Home Indoor Outdoor Vehicle Quiet Cnv? Cnv Cnv Cnv  Noise Music
quiet small crowd noise
group
GIS Location HA Classifier
a"Conversationin" is represented by Cnv.

Figure 5. EMA noise level ratings according to GIS location and HA classification.

Subjective ratings of speech understanding were explored according to GIS logged location and
HA classification (Figure 6). Ratings ranged between “fair” and “very good”. When comparing
median values, the participants reported speech understanding as “fair” when in vehicles (GIS),
conversation in noise, and noise only environments (HA); “good” when in outdoor locations (GIS),
conversationsin asmall group, or acrowd (HA); and “very good” at home, indoors, and in quiet

environments.

wg VeryGood 5 i —
| —
.‘g |
o Good 4
B0
£
2 Fair =
m
@
[ .
O Poor 4 No
o
5 Data
= Very Poor
3 Home Indoor Oudoor Vehicle Quiet Cnv? Cnv Cnv Cnv Noise Music
g_ quiet  small crowd noise
72 froup
GIS Location HA Classifier

2 "Conversationin" is represented by Cnv.

Figure 6. EMA speech understanding ratings according to GI S locations and HA classification.
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Ratings of listening effort were explored according to GIS location and HA classification (Figure
7). A large spread in ratings can be observed for locations and listening environments generally
associated with a higher noise level. Median listening effort rating values were between “low” and
“average” levelsfor both devices, with listening effort generally increasing with the complexity of
the situation; however, for both devices, participants perceived most locations and environments
with an “average” listening effort. The HA-classified music environment received the highest
listening effort ratings (the median value fell between “average” and “above average’ ratings).

High A

Above average o

Average < ——
Below average I
Low - i

Home Indoor Oudoor Vehicle Quiet Cnv®  Cnv Cnv Cnv  Noise Music
quiet small crowd noise
group
GIS Location HA Classifier

2"Conversationin" isrepresented by Cnv.

& L =

Listening Effort Rating

Figure 7. EMA listening effort ratings according to GIS locations and HA classification.

Discussion

General Feasibility

This exploratory study revealed severa limiting factorsin the feasibility of using multiple tracking
devices, related to equipment set-up demands and portability requirements. Participants were
provided with a backpack to store all devices over the course of data collection (see Figure 1). The
requirement to carry around alaptop was reported as cumbersome by some participants. The wired
set-up of the HA logging system presented challenges in continuous data collection, due to the
hearing aids disconnecting for a variety of reasons which often resulted in lost data from one or
both aids. Thiswas a known issue prior to beginning the study and as a result the participants were
asked to routinely check the connection of the devices over the course of data collection. Future
studies of this nature should strive for wireless set-ups with the ability to connect to a smartphone
application, for example. In addition, despite the small sample size and exploratory nature of this
study, large amounts of data were logged (Table 3), which required significant data alignment and
reduction prior to analyses. The primary analyses, comparing logged data, provides insight into the
strengths and limitations of each system.

Included Participants

This pilot study was limited to a small sample of adult participants with normal hearing. Further
research is needed to explore the feasibility of wireless data collection techniques incorporating
multiple devices viarea-world trials for individuals with hearing impairment. Although this study
highlights the potential of real-world data to inform HA classification and someinitial trends,
interpretation of the results are limited based on the small sample size and participant population.
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For example, listeners who have hearing loss may expend increased listening effortsin difficult

listening situations, compared to normal hearing listeners”. In general, daily life research methods
may highlight the increased listening demands imposed on hearing aid users and provide insight
into the efficacy and effectiveness of hearing aid classification schemes.

Towards a Better Understanding of Auditory Ecology

Despite these limitations, each of the devices included in the study provided a unique snapshot of
experienced auditory ecologies. When combining data across devices, we begin to provide a more
comprehensive view of listeners' ecological demands. Contextual information explored in this
study included physical and social context, signal level, and subjective rating of the performance
associated with different listening experiences; each device provided different levels of contextual
information (Table 1).

EMA research methods allowed us to capture a description of the contextual information of
interest, according to each participant’ s real-world experiences. Data were used as the baseline for
comparison across devices. In general, this study highlights the potential benefit of including more
than the traditional acoustic analyses in hearing aid classification. There are specific listening
activities that may be better captured through the addition of location-based information, for
example, knowledge of when alistener isin avehicle could inform unique classification schemes
that may be different for passengers versus drivers. GIS mapping can easily detect type of
location/activity based on patterns of acceleration, and the addition of EMA methods clarifies the
location and role of the listener in the vehicle. Social context related to the presence of listening
companion(s) and type of activity (for example, active versus passive listening) has the potential to
greatly improve the ecological validity of HA classification. Assuch, it islargely recognized that
GPS or any other tracking technologies will never provide the ability to completely replicate

activity-travel patterns or capture all the typical elements included in activity-trip diaries”. The
addition of location-based information may be of value when supplemented with other contextual

information. As technology advances (e.g., using wireless local area network routers”?), GIS data
may provide a more accurate, detailed and objective accounting of real-world activity and

mobility, especially for indoor locations™. In the future, it may be possible to use available
municipal land use data to determine more specific location-based information with GIS. For
example, when outdoors in aforest versus outdoors on a busy commercial street, or indoorsin a
public recreation centre versus indoorsin a private dwelling.

This study was designed to use both passive and interactive techniques in the collection of
ecologica data. The HA classifier, LENA device and GPS data were al examples of devices that
passively logged data, resulting in low burden to the participants at the time of data collection.
EMA required subjective input to categorize the environment, activity, and outcomes, which
increased the participant burden but provided rich information. Several strategies could be
employed to reduce participant burden. For example, if given permission by the user, a smartphone

can determine its location with built-in hardware”. Such location services could be used in future
EMA research, thereby minimizing the need for EMA or GIS classification of location. Further
research in the area of EMA methodology and questionnaire development may help reduce
participant burden, while still providing an accurate, detailed and subjective description of each
listener’ s auditory ecology.
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